Abstract

AbstractElectronic skins (e‐skins) have been widely investigated as important platforms for healthcare monitoring, human/machine interfaces, and soft robots. However, mask‐free formation of patterned active materials on elastomer substrates without involving high‐cost and complicate processes is still a grand challenge in developing e‐skins. Here, SiC‐based strain sensor arrays are fabricated on elastomer for e‐skins by a laser direct writing (LDW) technique, which is mask‐free, highly efficient, and scalable. The direct synthesis of active material on elastomer is ascribed to the LDW‐induced conversion of siloxanes to SiC. The SiC‐based devices own a highest sensitivity of ≈2.47 × 105 achieved at a laser power of 0.8 W and a scanning velocity of 1.25 mm s−1. Moreover, the LDW‐developed device provides a minimum strain detection limit of 0.05%, a small temperature drift, and a high mechanical durability for over 10 000 cycles. When it is mounted onto human skins, the SiC‐based device is able to monitor external stimuli and human health conditions, with the capability of wireless data transmission. Its potential application in e‐skins is further proved by an LDW‐fabricated device having 3 × 3 SiC sensor array for tactile sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.