Abstract
This paper describes fabrication of conductive, highly adhesive silver (Ag) micropatterns on transparent flexible double-decker-shaped polysilsesquioxane (DDPSQ) film by a laser direct writing technique using a precursor film prepared from liquid-dispersed Ag nanoparticles. The laser-written Ag micropatterns have been characterized by optical microscopy, field-emission scanning electron microscopy, surface profilometry, and resistivity measurements. The line width of the Ag micropatterns can be flexibly controlled by changing the objective lens magnification and laser spot size. Using a ×100 objective lens and laser energy density of 170.50 kW/cm2, Ag micropatterns with line width of about 4 μm have been achieved. The Ag micropatterns show excellent adherence to the DDPSQ surface as evaluated by Scotch-tape test. The resistivity of the Ag micropatterns has been determined to be 4.1 × 10−6 Ω cm using the two-point probe method, being almost comparable to that of bulk Ag (1.6 × 10−6 Ω cm). Thus, high-quality, narrow, homogeneous Ag microlines with high conductivity and adhesion can be produced under optimized laser scanning conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.