Abstract

We have developed a laser-diode-heated floating zone (LDFZ) method, in order to improve the broad and inhomogeneous light focusing in the conventional lamp-heated floating zone method, which often causes difficulties in the crystal growth especially for the incongruently melting materials. We have simulated the light focusing properties of the LDFZ method to make the whole of the molten zone irradiated with concentrated and homogeneous laser lights. We have designed and assembled an LDFZ furnace, and have demonstrated how it works through actual crystal growth. The method is applicable to various kinds of materials, and enables stable and reproducible crystal growth even for the incongruently melting materials. We have succeeded in the crystal growth of representatives of the incongruently melting materials such as BiFeO3 and (La,Ba)2CuO4, which were believed to be difficult to be grown by the conventional method. Tolerance to the decentering of samples and highly efficient heating are also established in the LDFZ method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.