Abstract
A novel method for fast analysis is presented. It is based on laser desorption injection followed by fast gas chromatography-mass spectrometry (GC-MS) in supersonic molecular beams. The sample was placed in an open air or purged laser desorption compartment, held at atmospheric pressure and near room temperature conditions. Desorption was performed with a XeCl Excimer pulsed laser with pulse energy of typically 3 mJ on the surface. About 20 pulses at 50 Hz were applied for sample injection, resulting in about 0.4 s injection time and one or a few micrograms sample vapor or small particles. The laser desorbed sample was further thermally vaporized at a heated frit glass filter located at the fast GC inlet. Ultrafast GC separation and quantification was achieved with a 50-cm-long megabore column operated with a high carrier gas flow rate of up to 240 mL/min. The high carrier gas flow rate provided effective and efficient entrainment of the laser desorbed species in the sweeping gas. Following the fast GC separation, the sample was analyzed by mass spectrometry in supersonic molecular beams. Both electron ionization and hyperthermal surface ionization were employed for enhanced selectivity and sensitivity. Typical laser desorption analysis time was under 10 s. The laser desorption fast GC-MS was studied and demonstrated with the following sample/matrices combinations, all without sample preparation or extraction: (a) traces of dioctylphthalate plasticizer oil on stainless steel surface and the efficiency of its cleaning; (b) the detection of methylparathion and aldicarb pesticides on orange leaves; (c) water surface analysis for the presence of methylparathion pesticide; (d) caffeine analysis in regular and decaffeinated coffee powder; (e) paracetamol and codeine drug analysis in pain relieving drug tablets; (f) caffeine trace analysis in raw urine; (g) blood analysis for the presence of 1 ppm lidocaine drug. The features and advantages of the laser desorption fast GC-MS are demonstrated and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.