Abstract

We have employed 200-fs, 400-nm laser pulses to desorb intact protein molecular ions directly from a frozen aqueous matrix. The resulting spectra obtained using a variety of proteins varying in molecular weight from 1060 (bradykinin) to 5778 Da (insulin) are compatible with those obtained with traditional matrix-assisted laser desorption/ionization experiments. High-quality spectra could be generated using a fluence of 4.0-9.0 J/cm2 to desorb proteins from an aqueous solution frozen onto metal substrates with a sensitivity in the femtomole range. Although the mechanism behind this effect is still not clear, we speculate that it involves explosive boiling of the ice layer due to rapid heating of the substrate. Imaging experiments conducted on the ice layer suggest that the yield of protein is approximately independent of the film thickness and is very reproducible from shot to shot. The results are particularly significant since they open the possibility of examining a range of biomaterials directly from the in vivo aqueous environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.