Abstract

Laser desorption/ionization from structured surfaces has been the object of recently renewed interest. Conditions in the plume of material ablated from such surfaces may differ from those of a sample which is ablated in bulk. Since recombination and secondary ion-molecule reactions in the plume play a major role in determining the types and quantities of ions observed at the detector, these differences are analytically relevant. Desorption/ionization substrates with channels of high aspect ratio are modeled as capillary nozzles, from which free jets are emitted. A previously developed matrix-assisted laser desorption/ionization ablation/ionization model is adapted for these jets. More primary ions reach the detector when ablated from a capillary orifice, but fewer analye ions are created in secondary reactions. These differences in ion yield can persist for arrays of capillaries on the surface, depending on the ratio of their diameter to spacing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.