Abstract

An energy-balance equation for excited carriers and phonons is established for studying the laser cooling of wide-bandgap semiconductors using three-photon excitation process. The power-exchange densities of the system are calculated for different strengths of the excitation filed. When the power-exchange density is positive, it implies laser cooling of the lattice. The effects of initial lattice temperature and field-frequency detuning on the laser-cooling phenomenon under the three-photon excitation process is demonstrated. The power-exchange densities are compared for both laser cooling and heating using nonlinear excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.