Abstract

A lightsail can be accelerated to ultra-high speed by the radiation pressure of a laser having an intensity of the order of GW/m$^2$, which though presents a critical challenge in the thermal management of lightsails. In this letter, we explore the applicable regimes of solid-state laser cooling in dissipating heat in additional to the previously explored radiative cooling approach. We begin by examining the cooling capacity of laser cooling, and show that the cooling rate from a micron-thick layer doped with ytterbium ions can exceed that of blackbody thermal emission. This allows more intense laser illumination upon material damage, and consequently shortened acceleration distance. Next, we explore the impact of the limited operating bandwidth of laser cooling to account for the Doppler shift of the pumping laser, and conclude that laser cooling is helpful for target velocities $\lesssim5\%$ for room-temperature operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call