Abstract
Superfluidity is a quantum state of matter that exists macroscopically in helium at low temperatures. The elementary excitations in superfluid helium have been probed with great success using techniques such as neutron and light scattering. However, measurements of phonon excitations have so far been limited to average thermodynamic properties or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of phonon excitations in real time. Furthermore, strong light–matter interactions allow both laser cooling and amplification. This represents a new tool to observe and control superfluid excitations that may provide insight into phonon–phonon interactions, quantized vortices and two-dimensional phenomena such as the Berezinskii–Kosterlitz–Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including the prospect of femtogram masses, high mechanical quality factors, strong phonon–phonon and phonon–vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size. It takes extreme sensitivity to measure the elementary excitations in liquid helium-4. An optomechanical cavity with a thin film of superfluid inside can be used to both observe and control phonons in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.