Abstract
In depositing multiple layers on the surface of failed metal parts, the overlap rate is a critical factor in determining the surface smoothness and uniformity of the coating thickness. Therefore, special attention must be given to the spacing between adjacent melt tracks when planning laser paths on complex metal parts. A strategy for selecting the overlap rate for multi-track cladding is proposed, based on the key parameters of surface curvature, mass conservation, and the profile of single-track coatings. A multi-track overlap model is developed, expressing the relationship between coating morphology and the overlap rate. The optimal spacing value is determined to achieve the goal of high-quality coating remanufacturing. To verify the effectiveness of this method, nickel-based powder was used for laser forming on the surface of metal gears. The results showed that the surface of the cladding layer was smooth and flat, further demonstrating that this model helps improve the repair quality and overall performance of curved metal parts. Thus, it provides valuable guidance for the remanufacturing of failed metal parts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.