Abstract

Laser cladding was used to fabricate 316L/TiC composite coatings after optimizing the feedstock powder morphology. Firstly, the influences of ball-to-powder ratio (BPR) and milling duration on the morphology were investigated. The BPR of 1: 1 and 2 h of milling was sufficient to attach considerable amount of TiC particles onto 316L particles. Then, the microstructure and hardness behaviors of 15 vol% TiC reinforced 316L coatings were examined. Partial or total dissolution of the original TiC powders led to the formation of a reinforced austenitic microstructure with a hardness increase of 100 HV. This increase is due to a grain refinement effect of the TiC during solidification and the presence of new solidification carbides. Partially dissolved and primary MC globular carbides are well-distributed in the matrix together with few larger MC globular carbides. Furthermore, MC coral-like pseudo-primary carbides and MC branched eutectic carbides are observed inside the cells and in intercellular spaces, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.