Abstract
Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This ‘laser chemistry’ approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density mesoporous materials with relatively low specific surface areas and thermally stable in air up to around 600°C. Moreover, NCFs disperse well in a variety of solvents and can be successfully chemically processed to enable their handling and provide NCF-containing biocomposite fibers by a wet-chemical spinning process. These promising results may open new and interesting avenues toward the use of NCFs for technological applications.
Highlights
Laser technologies can be successfully utilized for the production of carbon-nanostructured materials exhibiting fascinating structural and physical properties such as carbon nanotubes [1], carbon nanohorns [2], carbon nanofoams [3], or shell-shaped carbon nanoparticles [4]
SEM (Figure 2), TEM (Figure 3), and EDX characterization of the soot that resulted from the laser irradiation of different organometallic targets show that our laser ablation technique is restricted to the synthesis of Au/nanostructured carbon foams (NCFs) and Cu/NCFs [5,6], but it can provide a new family of metal-NCF hybrids of any desired metal
Laser ablation of naphthalene, phenanthrene, and 1,10-phenanthroline resulted in the formation of a NCF material which consisted of both amorphous carbon aggregates and graphitic nanodomains (Figures 2b and 3d)
Summary
Laser technologies can be successfully utilized for the production of carbon-nanostructured materials exhibiting fascinating structural and physical properties such as carbon nanotubes [1], carbon nanohorns [2], carbon nanofoams [3], or shell-shaped carbon nanoparticles [4]. Our group discovered the production of metal-nanostructured foams (NCFs) by laser ablation of triphenylphosphine (PPh3)containing organometallic targets [5]. We demonstrated that organic ligands can act as efficient carbon sources for the laser ablation production of carbon nanomaterials. Metal-NCFs are three-component materials which consist of amorphous carbon aggregates, metal nanoparticles embedded in amorphous carbon matrices, and graphitic nanostructures. The metal-NCF composition, metal nanoparticle size, and dilution
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.