Abstract

We present a time-dependent theory of laser catalysis, a process in which a strong light source is used to affect tunneling through a potential barrier by inducing a transient electronic excitation to a bound state. We have performed detailed calculations of pulsed laser catalysis on a one-dimensional Eckart potential as a function of the collision energy and the laser's central frequency. As in the cw case, the barrier transmission coefficients range from 100% tunneling on the blue side to complete suppression of tunneling on the red side of the radiatively broadened line. The point of perfect transmission is explained in the dressed state picture in terms of the equivalence between adiabatic laser catalysis and transmission through a double-barrier potential. The point of complete suppression of tunneling is shown to result from nonadiabatic destructive interference between the nonradiative tunneling and the optically assisted route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.