Abstract

Parallel intense photon (laser, microwave, etc.) beams &#x003C9;<sub>0</sub>,k<sub>0</sub> and &#x003C9;<sub>1</sub>,k<sub>1</sub> shone on a plasma with frequency separation equal to the plasma frequency &#x003C9;<sub>p</sub> is capable of accelerating plasma electrons to high energies in large flux. The photon beat excites through the forward Raman scattering large amplitude plasmons whose phase velocity is equal to (&#x003C9;<sub0</sub>-&#x003C9;<sub>1</sub>)/(k<sub>0</sub>-k<sub>1</sub>), close to c in an underdense plasma. The plasmon electrostatic fields trap electrons and carry them to high energies: Maximum electron energy <sup>max</sup> = 2mc<sup>2</sup>[1-(&#x003C9;<sub>0</sub>-&#x003C9;<sub>1</sub>)<sup>2</sup>/c<sup>2</sup>(k<sub>0</sub>-k<sub>1</sub>)<sup>2</sup>]<sup>-1</sup>~2mc<sup>2</sup>(&#x003C9;<sub>0</sub>/&#x003C9;<sub>p</sub>)<sup>2</sup>. The multiple forward Raman instability produces smaller and smaller frequency and group velocity of photons; thus the photons slow down in the plasma by emitting accelerated electrons (inverse Cherenkov process).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call