Abstract

Three- and ten-ply SiC fibre-reinforced Ti-6Al-4V composites were joined using a laser beam. With a 300 μm thick Ti-6Al-4V filler metal, fully penetrated welds without apparent fibre damage, could be obtained in welding directions both parallel and transverse to the fibre direction by controlling the welding heat input. Excess heat input resulted in the decomposition of SiC and subsequent TiC formation, and also caused degradation of joint strength. The welding of the three-ply composite in which full penetration was achieved at lower laser power, exhibited higher flexibility in heat input than that of the ten-ply composite. Heat treatment at 1173 K after welding improved the joint strength because of the homogenization of the weld metal and decomposition of TiC. The strengths of the transverse weld joints after the heat treatment were approximately 650 and 550 MPa for the three- and ten-ply composites, respectively. With the welding direction parallel to the fibre direction, the strengths both parallel and transverse to the weld joint were equivalent to those of the base plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.