Abstract

Optimization of Lamb modes induced by laser can be achieved by adjusting the spatial source distribution to the mode wavelength (λ). The excitability of Zero-Group Velocity (ZGV) resonances in isotropic plates is investigated both theoretically and experimentally for axially symmetric sources. Optimal parameters and amplitude gains are derived analytically for spot and annular sources of either Gaussian or rectangular energy profiles. For a Gaussian spot source, the optimal radius is found to be λZGV/π. Annular sources increase the amplitude by at least a factor of 3 compared to the optimal Gaussian source. Rectangular energy profiles provide higher gain than Gaussian ones. These predictions are confirmed by semi-analytical simulation of the thermoelastic generation of Lamb waves, including the effect of material attenuation. Experimentally, Gaussian ring sources of controlled width and radius are produced with an axicon-lens system. Measured optimal geometric parameters obtained for Gaussian and annular beams are in good agreement with theoretical predictions. A ZGV resonance amplification factor of 2.1 is obtained with the Gaussian ring. Such source should facilitate the inspection of highly attenuating plates made of low ablation threshold materials like composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.