Abstract

In this research, we present a novel approach to achieving super-resolution in silicon using the plasma dispersion effect (PDE) that temporarily controls the complex refractive index of matter. By employing a laser vortex pump beam, which is absorbed in the silicon, we can shape the complex refractive index as a gradient index (GRIN) lens, enabling the focusing of a laser probe beam within the material. Our study introduces a single beam at a wavelength of 775 nm for both the pump and the probe beams, offering tunable focusing capabilities and the potential to attain higher spatial resolution. These findings hold significant promise for applications in nanoelectronics and integrated circuit failure analysis, paving the way for advanced semiconductor imaging and analysis techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.