Abstract

The increasing use of optical data transmission systems and the development of new optical components require adjustment-insensitive and reliable joining and assembling techniques. The state of the art includes the utilization of silicon submounts with anisotropically etched V-grooves. Several glass fibers are fixed in these V-grooves with adhesive. Adhesive bonds tend towards degradation under the influence of temperature and moisture. For this reason, the alternative joining processes laser beam welding and laser beam soldering are relevant. The goal is a reliable joining of optical fibers in V-grooves without damage to the fibers or the silicon submount. Because of the anomaly of silicon during phase transformation, a positive joining can be realized by laser beam welding. A melt pool is created through the energy of a Nd:YAG-laser pulse. During solidification, the volume of silicon increases and a bump is formed in the center. Experiments have shown that this phenomenon can be used for joining optical fibers in silicon-V-grooves. With suitable parameters the silicon flows half around the fiber during solidification. For each fiber, several welding points are necessary. Another promising joining method is laser bema soldering. In this case, a second silicon sheet with a solder deposit is placed on the fibers which lie in the V-grooves of the metallized silicon submount. The laser heats the upper silicon until the solder metals by heat conduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call