Abstract

A robust method is demonstrated to measure acetone in human breath at sub parts-per-million by volume (ppmv) concentrations using diode laser cavity enhanced absorption spectroscopy. The laser operates in the near-infrared at about 1690 nm probing overtone transitions in acetone in a spectral region relatively free from interference from common breath species such as CO2, water, and methane. Using an optical cavity with a length of 45 cm, bound by mirrors of 99.997% reflectivity, a limit of detection of ∼180 parts-per-billion by volume (ppbv) (1σ) of breath acetone is achieved. The method is validated with measurements made with an ion-molecule reaction mass spectrometer. A technique to calibrate the optical cavity mirror reflectivity using a temperature dependent water vapor source is also described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call