Abstract

Dilute vertical pneumatic transport in a vertical lifter was studied using the sophisticated measurement techniques of laser Doppler anemometry (LDA) and phase Doppler anemometry (PDA). The vertical lifter consisted of a lower fluidized silo, an upper receiving tank, and a connecting vertical transport pipe made of clear glass. The experimental study was performed in order to get detailed information of the complex gas-particle flow behavior in a dilute vertical conveying system. Particle diameter, axial particle, and tangential particle velocities, as well as root mean square velocities, were measured simultaneously for different flow conditions. In addition, overall solid mass fluxes were obtained using weighing cells. Smooth and spherical zirconium oxide (ZrO2) solids were applied with two different particle size distributions. Measurements were performed using different flow rates of air. The air inlet condition was varied in order to study its effect on the flow behavior. The particle diameter measurements show that no axial or radial segregation by size occurs for this transport condition. The results show that the particle velocity is independent of the particle size as well. The axial velocity profiles at different heights are almost identical and flat, which indicates fully developed turbulent pipe flow. The turbulent velocity measurements show that turbulence is mainly caused by the velocity gradients, and not by particle-particle collisions in dilute flow. The solid mass flux measurements show the importance of optimum inlet condition and how this influences the mass flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.