Abstract

We report the first cooling of atomic anions by laser radiation. O^{-} ions confined in a linear Paul trap were cooled by selectively photodetaching the hottest particles. For this purpose, anions with the highest total energy were illuminated with a 532nm laser at their maximal radial excursion. Using laser-particle interaction, we realized a both colder and denser ion cloud, achieving a more than threefold temperature reduction from 1.15 to 0.33eV. Compared with the interaction with a dilute buffer gas, the energy-selective addressing and removal of anions resulted in lower final temperatures, yet acted 10 times faster and preserved twice as large a fraction of ions in the final state. An ensemble of cold negative ions affords the ability to sympathetically cool any other negative ion species, enabling or facilitating a broad range of fundamental studies from interstellar chemistry to antimatter gravity. The technique can be extended to any negative ion species that can be neutralized via photodetachment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call