Abstract

The new collinear resonant ionization spectroscopy (Cris) experiment at Isolde, Cern uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes and hyperfine structure measurements. The technique also offers the ability to purify an ion beam that is contaminated with radioactive isobars, including the ground state of an isotope from its isomer. A new program using the Cris technique to select only nuclear isomeric states for decay spectroscopy commenced last year. The isomeric ion beam is selected using a resonance within its hyperfine structure and subsequently deflected to a decay spectroscopy station. This consists of a rotating wheel implantation system for alpha and beta decay spectroscopy, and up to three high purity germanium detectors for gamma-ray detection. This paper gives an introduction to the Cris technique, the current status of the laser assisted decay spectroscopy set-up and recent results from the experiment in November 2011.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.