Abstract

In this paper laser applications to fluid dynamical problems are presented. Firstly as for the recent research on cavitations, pulsed-laser-induced cavitation bubble in liquid nitrogen is studied. The bubble is produced by focused and pulsed irradiation of second harmonics of YAG laser in the cryostat. The dynamics of laser-induced bubble is visualized by high-speed shadowgraphs and schlieren photographs by an image-converter camera (Imacon-790). Bubble and solid wall interactions are also investigated. Based on the results obtained, a novel laser surface processing technology using the pulse-laser-induced cavitation bubbles is secondly proposed. The possibility of cold material surface processing by produced cavitation bubble is discussed including the cryogenic range. Furthermore, discussing by the fundamental results of the experiment of laser-gas molecular absorption, the possibility of decomposition of environmental gases by strong CW CO<SUB>2</SUB> laser irradiation is also studied. Freon 12, 113, and other environmental gases including SF<SUB>6</SUB> are very tough to be decomposed, and they break effectively the ozone molecules at high altitude above the Earth, or they heat up the earth. The wavelength range of the infrared laser is suitable for the molecular absorption to increase their temperature to be ionized. The possibility and trial experiments are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.