Abstract

Laser annealing by pre-exposure to subdamage threshold laser pulses is a well-established method to increase the damage performance of bulk KH2PO4 and KDxH2−xPO4 nonlinear optical materials. The origin of laser-induced damage is believed to be localized absorption by a defect structure, either a light-absorbing foreign nanoparticle or a cluster of stoichiometric defects. It has been recently shown that there are at least three populations of such defect structures in these materials in which pre-exposure to laser pulses of specific fluence and wavelength results in a measurable reduction in their number density or decrease in their susceptibility to damage. In this work, we investigate the annealing characteristics of these three populations of defect structures in DKDP under variable irradiation conditions. The aim is to understand the similarities and differences between these populations in the way they interact with laser light. The results depict distinct behaviors that reveal information on the relationship between the defect populations and their modifications responsible for annealing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.