Abstract
Phase transformation of thin film (∼30 nm)In2Se3/Si(111) (amorphous→crystalline) was performed by resistive annealing and the reverse transformation (crystalline→amorphous) was performed by nanosecond laser annealing. As an intrinsic-vacancy, binary chalcogenide semiconductor, In2Se3 is of interest for non-volatile phase-change memory. Amorphous InxSey was deposited at room temperature on Si(111) after pre-deposition of a crystalline In2Se3 buffer layer (0.64 nm). Upon resistive annealing to 380°C, the film was transformed into a γ-In2Se3 single crystal with its {0001} planes parallel to the Si(111) substrate and \((11\bar{2}0)\) parallel to Si \((1\bar{1}0)\) , as evidenced by scanning tunneling microscopy, low energy electron diffraction, and X-ray diffraction. Laser annealing with 20-ns pulses (0.1 millijoules/pulse, fluence≤50 mJ/cm2) re-amorphized the region exposed to the laser beam, as observed with photoemission electron microscopy (PEEM). The amorphous phase in PEEM appears dark, likely due to abundant defect levels inhibiting electron emission from the amorphous InxSey film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.