Abstract

Additive manufacturing (AM) is considered the enabling technology for topology optimized components, with its unparalleled, almost free-form design freedom. Over the past decade, AM of electromagnetic materials has evolved into a promising new area of research. Considerable efforts have also been invested by the electrical machine (EM) research community to develop and integrate novel additive components. Several challenges remain, however, in printing soft magnetic flux guides—most prominently, reducing the induced eddy currents to achieve competitive AM core efficiency. This paper demonstrates the workflow of laser additive manufacturing magnetic cores with superior magnetic properties to soft magnetic composites (at 50 Hz excitation): describing the workflow, parameter tuning for both printing and annealing, and shape optimization. Process optimization yielded the optimal energy density of 77 J/mm3 and annealing temperature of 1200 °C, applied to prepare the samples with the highest relative density (99.86%), lowest surface roughness Rz (0.041 mm), minimal hysteresis losses (0.8 W/kg at 1.0 T, 50 Hz), and ultimate yield strength of 420 MPa. For Eddy current suppression, the sample (5 × 5 × 60 mm toroid) with bi-directional grading reached specific core losses as low as 1.8 W/kg (W10,50). Based on the findings, the advantages and disadvantages of AM graded cores are discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.