Abstract

Fe-based amorphous materials offer new opportunities for magnetic sensors, actuators, and magnetostrictive transducers due to their high saturation magnetostriction (λs = 20–40 ppm) and low coercive field compared with polycrystalline Fe-based alloys, which have high magnetostriction but large coercive fields and Co-based amorphous alloys with small magnetostriction (λs = −3 to −5 ppm). Additive layer manufacturing (ALM) offers a new fabrication technique for more complex net-shaping designs. This paper reviews the two different ALM techniques that have been used to fabricate Fe-based amorphous magnetic materials, including the structural and magnetic properties. Selective laser melting (SLM)—a powder-bed fusion technique—and laser-engineered net shaping (LENS)—a directed energy deposition method—have both been utilised to fabricate amorphous alloys, owing to their high availability and low cost within the literature. Two different scanning strategies have been introduced by using the SLM technique. The first strategy is a double-scanning strategy, which gives rise to maximum relative density of 96% and corresponding magnetic saturation of 1.22 T. It also improved the glassy phase content by an order of magnitude of 47%, as well as improving magnetic properties (decreasing coercivity to 1591.5 A/m and increasing magnetic permeability to around 100 at 100 Hz). The second is a novel scanning strategy, which involves two-step melting: preliminary laser melting and short pulse amorphisation. This increased the amorphous phase fraction to a value of up to 89.6%, and relative density up to 94.1%, and lowered coercivity to 238 A/m. On the other hand, the LENS technique has not been utilised as much as SLM in the production of amorphous alloys owing to its lower geometric accuracy (0.25 mm) and lower surface quality, despite its benefits such as providing superior mechanical properties, controlled composition and microstructure. As a result, it has been commonly used for large parts with low complexity and for repairing them, limiting the production of amorphous alloys because of the size limitation. This paper provides a comprehensive review of these techniques for Fe-based amorphous magnetic materials.

Highlights

  • Functional magnetic materials (FMMs) have gained considerable interest for advanced engineering devices owing to their technical benefits for energy conversion, harvesting, transmission, sensing/actuation [1], and more recently for magnetic refrigeration applications, based on their magnetocaloric effects [2]

  • It was concluded that to obtain fully amorphous alloys with the help of the laser-engineered net shaping (LENS) technique, the use of a finer starting powder would enable complete melting with the same process parameters, or increasing the heat input would allow for melting particles completely without influencing negatively the critical cooling rate needed to achieve full amorphisation [80]

  • This paper provides a review of laser additive manufacturing found in the literature for Fe-based amorphous alloys

Read more

Summary

Introduction

Functional magnetic materials (FMMs) have gained considerable interest for advanced engineering devices owing to their technical benefits for energy conversion, harvesting, transmission, sensing/actuation [1], and more recently for magnetic refrigeration applications, based on their magnetocaloric effects [2]. Casting methods including injection moulding have been used for the production of magnetic bulk metallic glasses (BMG) Zhang and his team utilised casting technique to fabricate glassy toroidal cores having good magnetic properties [15]. They consisted of Fe66 Co10 Mo3.5 P10 C4 B4 Si2.5 BMG with an outer diameter of 10 mm and inner diameter of 6 mm, and showed low coercivity (1.0 A/m), high maximum magnetic permeability (450,000), low core loss (0.4 W/kg at 50 Hz) and maximum magnetic flux density (1 T) [15]. This section mentions the use of powder-bed fusion and directed energy deposition techniques in the fabrication of amorphous magnetic Fe-based alloys, and the effects of process parameters on the final magnetic and mechanical properties.

Amorphous Fe-Based Magnetic Alloys
Saturation
82 B12 Si
Additive Manufacturing of Amorphous Fe-Based Magnetic Alloys
Powder-Bed Fusion
B phases
71 Silayer
12. The macroscopic photograph
Direct Energy Deposition
18. Cross-sectional
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call