Abstract

The electron acceleration mechanism associated with the generation of a plasma wave due to self-modulation instability of laser radiation in a subcritical plasma produced by a laser prepulse coming 10 ns before the arrival of the main intense femtosecond pulse is considered. Three-dimensional particle-in-cell simulations of the interaction of laser radiation with two-dimensionally inhomogeneous subcritical plasma have shown that, for a sufficiently strong plasma inhomogeneity and a sharp front of the laser pulse, efficient plasma wave excitation, electron trapping, and generation of collimated electron beams with energies on the order of 0.2–0.5 MeV can occur. The simulation results agree with experiments on the generation of collimated beams of accelerated electrons from metal targets irradiated by intense femtosecond laser pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.