Abstract
Mass-transport acceleration is essential toward enhanced electrocatalytic performance yet rarely recognized under irradiation, because light is usually reported to improve charge transfer. We studied laser-enhanced mass transport through the heterojunction between Ag and semiconductor Fe2O3 situated on graphene for oxygen reduction reaction. Because of the decreased mass-transport resistance by 59% under 405 nm laser irradiation, the current density can be enhanced by 180%, which is also supported by a theoretical calculation. This laser-enhanced mass transport was attributed to local photothermal heating and the near-field local enhancement. Easier desorption of OH- species occurring between the Fe and Ag centers under the laser accelerates the mass-transport centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.