Abstract

To date, no method has been developed to assess the distribution of mycotoxins on the surface of grains, or other plant material, and the depth of their penetration into the interior. The Infrared (IR) Laser Ablation-Remote-Electrospray Ionization (LARESI) platform coupled to a tandem mass spectrometer (MS/MS), measuring in selected reaction monitoring (SRM) mode, was employed for the targeted imaging of selected metabolites of Aspergillus fumigatus, including mycotoxins in biological objects for the first time. This methodology allowed for the localisation of grain metabolites and fungal metabolites of grain infected by this mould. The distribution of metabolites in spelt grain was differentiated: fumigaclavine C, fumitremorgin C, and fumiquinazoline D were located mainly in the embryo, brevianamide F in the seed coat, and fumagillin in the endosperm. The LARESI mass spectrometry imaging method can be used in the future for the metabolomic analysis of mould metabolites in various plants and agricultural products.

Highlights

  • Moulds produce a wide variety of primary and secondary metabolites, including mycotoxins.They comprise approximately 400 low-molecular-weight substances, which exhibit great structural diversity and thermal and chemical stability [1,2]

  • The aim of the study was to assess the spatial distribution of grain metabolites and secondary metabolites of Aspergillus fumigatus mould under model conditions on an agar medium and spelt grain, using laser ablation-remote-electrospray ionisation mass spectrometry imaging (LARESI Mass spectrometry imaging (MSI)) in selected reaction monitoring mode (SRM)

  • Ion images for 11 selected metabolites in agar medium and spelt grains infected by A. fumigatus mould were obtained by applying the MSI method

Read more

Summary

Introduction

Moulds produce a wide variety of primary and secondary metabolites, including mycotoxins. They comprise approximately 400 low-molecular-weight substances, which exhibit great structural diversity and thermal and chemical stability [1,2]. Mycotoxins are produced by more than 200 identified moulds, belonging primarily to the genera Aspergillus, Fusarium, and Penicillium [3,4,5]. The presence of mould secondary metabolites in food, beverages, and feed has been recognised as a potential threat to human and animal health. Acute and chronic diseases can arise, caused mainly by the direct contamination of plant materials or their products [4,6].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.