Abstract

The time-resolved optical emission spectroscopy of Ti-Al alloy plasma produced by the Nd:YAG high-power laser pulses with wavelength of 1064nm was investigated both in air and vacuum conditions. The comparative studies gave detailed insights that the plasmas produced in air were much hotter and denser. The quantitative descriptions indeed suggested that a cascade avalanche process would be happen followed by air plasma firstly, before the laser impacting the target surface. On the other hand, the laser energy may be considerably attenuated via hotter and denser plasma, the amount of laser energy on the target surface remarkably decreased in air condition. In addition, at high-power laser irradiance levels, there was an auto regulatory area near the target surface and the plasma parameters tend to be saturated

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.