Abstract

Artificial lipid bilayers are a powerful tool for studying synthetic or reconstituted ion channels. Key to forming these lipid bilayers is having a small aperture in a septum separating two solution chambers. Traditional methods of aperture generation involve manually punching the aperture into the septum. While these techniques work, they are difficult to implement reliably and do not produce consistently sized apertures. Presented here is a method of using a UV excimer laser with a nanosecond scale pulse width to laser ablate apertures from 4 to 105 microm in 20 microm thick polycarbonate films for use in artificial lipid bilayer experiments. The data demonstrate that the apertures produced by laser ablation are highly reproducible and can support both the formation of stable, long-lasting lipid bilayers as well as the recording of ion channels incorporated into the bilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.