Abstract

The effects of multiple pulses of a CO2 laser with energy of 2.5 J and pulse duration of 200 ns on the surface morphology of ion irradiated CR-39 is investigated in light of the modification in its track registration properties. For this purpose, a CR-39 was exposed by a CO2 laser generated hydrogen, argon, cadmium, air molecular ions (N2 and O2, etc.), high energy (300 KeV) proton beam from Cock Croft Walton accelerator, and α (5 MeV) from 0.5 μCi Pu239 source. The registered tracks were enlarged after 6 h of 6.25 N NaOH etching. These etched detectors were then exposed to different number of CO2 laser shots. The etched detectors were then analyzed by a computer controlled optical microscope (Lexica DMR series). It was observed that even a single shot of CO2 laser, irrespective of the registered ions tracks, can change the track registration properties of CR-39, and can remove the vaporization resistant skin present on the polymer (CR-39). A significant change in track density and track shaping regardless of the ions is observed. At the outside of the focal area, the ion density of different registered tracks is compared graphically before and after laser irradiation. Laser ablation of unexposed CR-39 is also done with multiple pulses CO2 laser. In this regard, the coherent and non-coherent structures, diffraction patterns, circular fringes with corrugations and ripples, droplets, chain like structures with cluster formation, chain folded crystallites, and hole drilling were observed. The irradiation induced ablation of the polymer is of great importance in electronics industry, lithography, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call