Abstract

BackgroundLaser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) emerged in the mid-1980s and rapidly became a crucial dating tool. The advent of femtosecond LA systems has substantially reduced volatility-dependent mass fractionation. This study showcases U-Th and U-Th-Pb dating results of Quaternary zircons collected from Jeju Island, Korea, utilizing an advanced femtosecond laser-connected multi-collector (MC)-ICPMS.FindingsZircon grains from trachyte samples near the Baeknokdam lake (JJ616-1), Yeongsil (JJ08-1), Chunwangsa (JJ09-1), and Oraidong (JJ09-3) provided weighted mean 238U-230Th ages of 28.7 ± 1.6 ka (n = 56/64, MSWD = 3.8), 81.8 ± 10.9 ka (n = 11/12, MSWD = 1.6), 92.6 ± 4.6 ka (n = 49/51, MSWD = 2.2), and 117.6 ± 8.2 ka (n = 48/50, MSWD = 3.2), respectively. The age determination for JJ08-1 zircon aligned well with the recommended value (82 ± 6 ka). Zircons from Sanbangsan (JJ615-1) and Wonmansa (JJ08-2) trachytes yielded common Pb and radioactive disequilibrium-corrected weighted mean 238U-206Pb ages of 785 ± 5 ka (n = 27/28, MSWD = 0.90) and 743 ± 8 ka (n = 28/30, MSWD = 0.79), respectively. The weighted mean 238U-206Pb ages of Penglai and 61.308 reference zircons were determined to be 4226 ± 21 ka (n = 22/25, MSWD = 3.8) and 2488 ± 20 ka (n = 19/20, MSWD = 1.8), respectively. These ages are concordant with the recommended values.ConclusionsOur data provides additional evidence of trachyte magmatism occurring in Jeju Island during the transitional period between the Early and Middle Pleistocene and the Late Pleistocene. The zircon samples analyzed in this study could serve as reference age data for Quaternary geochronology research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call