Abstract

Abstract Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation (LA) Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) technique, we successfully overcome the difficulty in sampling and dating ultra-low U-Pb ancient marine carbonates, which was previously untenable by isotope dilution (ID) methods. We developed the LA-MC-ICP-MS in situ U-Pb dating technique for ancient marine carbonates for the study of diagenesis-porosity evolution history in Sinian Dengying Formation, Sichuan Basin. By systematically dating of dolomitic cements from vugs, matrix pores and fractures, we found that the burial and diagenetic process of dolomite reservoirs in Sinian Dengying Formation was characterized by progressive filling-up of primary pores and epigenic dissolution vugs. The filling of vugs happened in three stages, early Caledonian, late Hercynian-Indosinian and Yanshanian-Himalayan, while the filling of matrix pores mainly took place in early Caledonian. The unfilled residual vugs, pores and fractures constitute the main reservoir sapce. Based on the above knowledge, we established the diagenesis-porosity evolution history of the dolomite reservoir in Sinian Dengying Formation, Sichuan Basin. These findings are highly consistent with the tectonic-burial and basin thermal histories of the study area. Our study confirmed the reliability of this in situ U-Pb dating technique, which provides an effective way for the investigation of diagenesis-porosity evolution history and evaluation of porosity in ancient marine carbonate reservoirs before hydrocarbon migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call