Abstract

A pulsed (10 Hz) infrared (IR) (1064 nm) laser is focused on a sample surface by means of a microlensed fiber. Analytes desorbed from the surface are captured by charged microdroplets before entering a mass spectrometer. By translating the sample surface, a chemical map is generated with a resolution of 5 μm, defined as the change from 20 to 80% of the analyte signal intensity. As a demonstration of the power of this new imaging technique, analytes from a parsnip root section are imaged and compared with that obtained from conventional laser ablation electrospray ionization mass spectrometry. The improvement in spatial resolution is about a factor of 20.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.