Abstract

Vacuum chamber surface characteristics such as the photon and secondary electron yields (PEY and SEY) are critical parameters in the formation of an electron cloud, a serious problem that limits the performance of proton and positron accelerators. A few years ago it was discovered by the Vacuum Solutions Group at Daresbury laboratory that Laser Ablation Surface Engineering (LASE) could provide surfaces with SEY<1 [1,2]. The LASE surfaces are considered as a baseline solution for electron cloud miti-gation in the Future Circular Collider (FCC). However, these surfaces are undergoing further optimisation for the FCC application. While keeping SEY<1 the surfaces should meet the following criteria: Low outgassing, Low particulate generation and low surface resistance. In this paper we will report a number of new surfaces created using the LASE technique with different laser parameters (wavelength, scan speed, pitch, repetition rate, power, and pulse length) and their effect on the SEY, surface re-sistance and vacuum properties, etc

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call