Abstract

This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40 μg·mL−1 (11.1460 μg·mL−1 and 25.8689 μg·mL−1, resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40 μg·mL−1 (29.018 μg·mL−1 and 17.230 μg·mL−1, resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277 μg·mL−1 and 706.990 μg·mL−1) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar.

Highlights

  • Marine environments, in the tropics, have greater species richness than tropical forests

  • The crude dichloromethane, methanol, ethanol, and water extracts from different algal species (Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta)) and the chloroform and hexane fractions of extracts from H. musciformis and P. gymnospora were screened for biological activity

  • The A. aegypti larvicidal tests revealed that only the hexane and chloroform fractions of P. gymnospora exhibited larvicidal activity, with LC50 values of 29.01 μg⋅mL−1 and 17.23 μg⋅mL−1, respectively (Table 1); the other extracts exhibited lower activities

Read more

Summary

Introduction

In the tropics, have greater species richness than tropical forests. These diverse species are capable of producing a wide variety of chemical compounds with unique structures and functions, and many of these compounds can be used for the development of novel drugs [1, 2]. As an abundant resource in Brazilian coastal waters, marine algae exhibit a great potential source of novel compounds. It is known that species of marine algae synthesize bioactive compounds with diverse activities [2]. Many studies aiming to identify representative genera of marine algae that produce bioactive substances have been conducted. In the last three decades, the rate of discovery of biologically active metabolites produced by macroalgae has increased [3,4,5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call