Abstract

The dispersal potential of crown-of-thorns starfish (CoTS) larvae is important in understanding both the initiation and spread of population outbreaks, and is fundamentally dependent upon how long larvae can persist while still retaining the capacity to settle. This study quantified variation in larval survivorship and settlement rates for CoTS maintained at three different densities of a single-celled flagellate phytoplankton, Proteomonas sulcata (1 × 103, 1 × 104, and 1 × 105 cells/mL). Based on the larval starvation hypothesis, we expected that low to moderate levels of phytoplankton prey would significantly constrain both survival and settlement. CoTS larvae were successfully maintained for up to 50 days post-fertilization, but larval survival differed significantly between treatments. Survival was greatest at intermediate food levels (1 × 104 cells/mL), and lowest at high (1 × 105 cells/mL) food levels. Rates of settlement were also highest at intermediate food levels and peaked at 22 days post-fertilization. Peak settlement was delayed at low food levels, probably reflective of delayed development, but there was no evidence of accelerated development at high chlorophyll concentrations. CoTS larvae were recorded to settle 17–43 days post-fertilization, but under optimum conditions with intermediate algal cell densities, peak settlement occurred at 22 days post-fertilization. Natural fluctuations in nutrient concentrations and food availability may affect the number of CoTS that effectively settle, but seem unlikely to influence dispersal dynamics.

Highlights

  • Sessile and benthic marine invertebrates are fundamentally dependent on the larval phase of their lifecycle for dispersal away from natal reefs, which is important for enabling colonization of new habitats, recolonization following population depletion, and genetic exchange among sub-populations [1,2]

  • Adult Acanthaster cf. solaris [21] were collected from the Great Barrier Reef (GBR) near Cairns, Australia (16◦ 550 S, E) by control divers employed by the Association of Marine Park Tourism Operators (AMPTO)

  • Unlike Fabricius et al [19] which showed that crown-of-thorns starfish (CoTS) larvae failed to develop at chlorophyll concentrations

Read more

Summary

Introduction

Sessile and benthic marine invertebrates are fundamentally dependent on the larval phase of their lifecycle for dispersal away from natal reefs, which is important for enabling colonization of new habitats, recolonization following population depletion, and genetic exchange among sub-populations [1,2]. Despite the short larval duration of most marine organisms (days to months), larvae may be dispersed over great distances [2]. Diversity 2017, 9, 2 or self-recruitment versus departure) in the range of dispersal distances for individual species [5]. Variation in dispersal within and among cohorts of larvae will have a critical influence on population dynamics and persistence for widespread species [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.