Abstract

We summarize characteristic sequences of morphological change in the teleost visual system from larvae to large adults at the level of the retina, the optic tract and the optic tectum. These shifts include sizes and ratios of cone and rod receptor cells, sizes and types of retinal ganglion cells and optic tract fibers as well as features of the optic tectum. Teleost larvae are the smallest vertebrates known. We suggest that the utilization of color contrasts as an adaptive benefit dictates the starting point of morophological development, which is a pure cone retina in most fish larvae. The direction of morphological and functional shifts in the teleost visual system during growth is determined by continuous retinal stretch, which allows for improving visual abilities. The larval visual system probably provides just adequate photopic (cone-)acuity for plankton feeding, but limited space in the retina hampers optimization of both, photopic resolving power and sensitivity Limited space also Irevents the simultaneous development of the scotopic (rod-)system. Over a wide range of body sizes, morphological parameters change, photopic and scotopic resolving power, acuity and sensitivity improve. Size constraints in the teleost visual system and lifefong shifts in sensory capacities are discussed with respect to ecology and the niche concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.