Abstract

Risk assessment of pesticides involves ecotoxicological testing. In case pesticide exposure to bees is likely, toxicity tests are performed with honey bees (Apis mellifera), with a tiered approach, for which validated and internationally accepted test protocols exist. However, concerns have grown regarding the protection of non-Apis bees [bumble bees (Bombus spp.), solitary and stingless bees], given their different life cycles and therefore distinct exposure routes. Larvae of solitary bees of the genus Osmia feed on unprocessed pollen during development, yet no toxicity test protocol is internationally accepted or validated to assess the impact of pesticide exposure during this stage of their life cycle. Therefore, the purpose of this study is to further validate a test protocol with two solitary bee species (O. cornuta and O. bicornis) to assess lethal and sublethal effects of pesticide exposure on larval development. Larvae were exposed to thiacloprid (neonicotinoid insecticide) mixed in a new, artificial pollen provision. Both lethal (developmental and winter mortality) and sublethal endpoints (larval development time, pollen provision consumption, cocoon weight, emergence time and adult longevity) were recorded. Effects of lower, more environmentally realistic doses were only reflected in sublethal endpoints. In both bee species, thiacloprid treatment was associated with increased developmental mortality and larval development time, and decreased pollen provision consumption and cocoon weight. The test protocol proved valid and robust and showed that for higher doses of thiacloprid the acute endpoint (larval mortality) is sufficient. In addition, new insights needed to develop a standardized test protocol were acquired, such as testing of a positive control for the first time and selection of male and female individuals at egg level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.