Abstract

The causes and effects of ontogenetic torsion in gastropods have been debated intensely for more than a century (1-19). Occurring rapidly and very early in development, torsion figures prominently in shaping both the larval and adult body plans. We show that mechanical explanations of the ontogenetic event that invoke contraction of larval retractor muscles are inadequate to explain the observed consequences in some gastropods. The classic mechanical explanation of Crofts (4, 5) and subsequent refinements of her explanation have been based on species with rigid larval shell properties (18, 19) that cannot be extrapolated to all gastropods. We present visual evidence of the lack of rigidity of the uncalcified larval shell in a basal trochid gastropod, Margarites pupillus (Gould), and provide photographic confirmation of our prediction that larval retractor muscle contraction is insufficient to produce more than local deformation or dimpling at the site of muscle insertion. These findings do not refute muscular contraction as a primary cause of ontogenetic torsion in gastropods that calcify their larval shells prior to the onset of torsion, nor do they refute the monophyly of torsion. They do, however, suggest that torsion may be a loosely constrained developmental process with multiple pathways to the more constrained end result (20, 21).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call