Abstract

Female horseshoe crabs, Limulus polyphemus (Linnaeus), lay their eggs in nests on sandy beaches near the high water line. Embryos develop within the sand, hatch into trilobite larvae, and enter the water column when the nest is inundated. Given the diversity of tidal and shoreline inundation patterns that populations of L. polyphemus experience throughout their range (semidiurnal and diurnal tides, microtidal, and nontidal), hatching may also be facilitated by environmental triggers that serve to synchronize hatching and larval emergence with periods of high water. The objective of this study was to determine if larval hatching in L. polyphemus is triggered or facilitated by environmental cues. Stage 21 embryos were subjected to one of seven different treatments that simulated conditions experienced during inundation: (1) hydration, (2) agitation, (3) hydration and agitation, (4) hydration and agitation with sand, (5) osmotic shock, (6) terrestrial hypoxia, and (7) aquatic hypoxia. Hatching rates increased significantly under all simulated tidal conditions compared to controls and were highest (96%) for eggs simultaneously exposed to both hydration and agitation with sand. Measurements of the osmolarity of the perivitelline fluid of developing eggs collected from the field indicated that it is hyperosmotic to the ambient seawater and porewater. Thus, when inundated, eggs also experience a hypoosmotic shock, which would likely facilitate hatching by causing the eggs to swell, rupturing the egg membrane and thereby increasing the likelihood that larvae would hatch and enter the water column during periods of high water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call