Abstract
Much of the work on phenotypic plasticity has focused on inducible defenses. As a result, little is known about induced phenotypes that improve the acquisition of resources (i.e. inducible offenses). Feeding larvae of several marine invertebrate species, gastropods and echinoderms, have inducible offenses, and produce larger feeding structures when given less food. To better understand inducible offenses, I investigated when in development sea urchin and sand dollar larvae can first alter their feeding morphology in response to different concentrations of food. Food induced feeding structure changes in both sea urchin and sand dollar larvae before larvae were able to ingest food. This suggests that the nervous system and a regulator gene, orthopedia, play a mechanistic role. In addition, larvae of the two species, Strongylocentrotus purpuratus and Dendraster excentricus, responded to different cues. Pre-feeding larvae of both species developed relatively shorter arms when given algal cells (i.e. chemical and physical stimuli), whereas only pre-feeding larvae of D. excentricus developed shorter arms when exposed to algal exudates (i.e. chemical stimuli). Larvae of neither species responded morphologically to the presence of polystyrene beads (i.e. physical stimuli).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Marine Biology and Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.