Abstract

Most coral-associated decapod species have non-migratory adult populations and depend on their planktonic larvae for dispersal. This study examined the metapopulation structure of three decapod species with different pelagic larval duration (PLD) from twelve coral reef complexes of the Gulf of Mexico. The dispersion of larvae was analyzed through the use of a realistic numerical simulation of the Gulf of Mexico with the Hybrid Coordinate Ocean Model. To study the transport and dispersion of particles in near-surface waters, a particle-tracking subroutine was run using as input the currents from the model. The simulation consisted of the launch of 100 passive particles (virtual larvae) every 24 hours from each reef throughout five years, and tracked for as long as 210 days. Results indicated that species with a short PLD, Mithraculus sculptus (PLD 8‒13 days), had a weak connection among the reefs, but higher self-recruitment, especially on the narrow western shelf. The species with a longer PLD, Dromia erythropus (28‒30 days), had a stronger connection among neighboring reefs (< 300 km). Finally, the species with an even longer PLD, Stenopus hispidus (123‒210 days), had a wider potential distribution than the other species. Circulation on synoptic, seasonal and interannual scales had differential effects on the larval dispersal of each species. The metapopulation structure of M. sculptus and D. erythropus seemed to combine features of the non-equilibrium and the patchy models, whereas that of S. hispidus presumably fit to a patchy model. These findings support previous observations that indicate that species with longer PLD tend to occupy larger areas than species with short PLD, although recruitment of juveniles to the adult populations will also depend on other factors, such as the availability of suitable habitats and the ability to colonize them.

Highlights

  • The term metapopulation was coined by Levins [1] and, in a brief way, it referred to a population of populations

  • We analyzed the role of hydrodynamic features in the dispersal pathways and metapopulation structure of species, and we investigated the relationship of the geographical distribution of species with their pelagic larval duration (PLD)

  • This study examines the influence of hydrodynamic features over the metapopulation structure and larval dispersal pattern of three coral-associated decapod species –which depend on their larval phase for dispersal– over twelve coral reef systems in the Gulf of Mexico

Read more

Summary

Introduction

The term metapopulation was coined by Levins [1] and, in a brief way, it referred to a population of populations. The first metapopulation model, proposed by Levins [1], described the dynamics of a species in a set of patches that could be occupied by colonization processes or could become empty through extinction events. This model assumed that habitat patches were all the same size and were isolated [5]. Many populations combine features of more than one models [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call