Abstract

AbstractDispersal of benthic species in the sea is mediated primarily through small, vulnerable larvae that must survive minutes to months as members of the plankton community while being transported by strong, dynamic currents. As climate change alters ocean conditions, the dispersal of these larvae will be affected, with pervasive ecological and evolutionary consequences. We review the impacts of oceanic changes on larval transport, physiology, and behavior. We then discuss the implications for population connectivity and recruitment and evaluate life history strategies that will affect susceptibility to the effects of climate change on their dispersal patterns, with implications for understanding selective regimes in a future ocean. We find that physical oceanographic changes will impact dispersal by transporting larvae in different directions or inhibiting their movements while changing environmental factors, such as temperature, pH, salinity, oxygen, ultraviolet radiation, and turbidity, will affect the survival of larvae and alter their behavior. Reduced dispersal distance may make local adaptation more likely in well‐connected populations with high genetic variation while reduced dispersal success will lower recruitment with implications for fishery stocks. Increased dispersal may spur adaptation by increasing genetic diversity among previously disconnected populations as well as increasing the likelihood of range expansions. We hypothesize that species with planktotrophic (feeding), calcifying, or weakly swimming larvae with specialized adult habitats will be most affected by climate change. We also propose that the adaptive value of retentive larval behaviors may decrease where transport trajectories follow changing climate envelopes and increase where transport trajectories drive larvae toward increasingly unsuitable conditions. Our holistic framework, combined with knowledge of regional ocean conditions and larval traits, can be used to produce powerful predictions of expected impacts on larval dispersal as well as the consequences for connectivity, range expansion, or recruitment. Based on our findings, we recommend that future studies take a holistic view of dispersal incorporating biological and oceanographic impacts of climate change rather than solely focusing on oceanography or physiology. Genetic and paleontological techniques can be used to examine evolutionary impacts of altered dispersal in a future ocean, while museum collections and expedition records can inform modern‐day range shifts.

Highlights

  • Dispersal drives the exchange of genetic material among populations, with diverse ecological and evolutionary consequences including species range limits, connectivity, and the potential for local adaptation

  • Scenario Range expansion driven by larval physiology and extreme events Local adaptation impacted by reduced pelagic larval duration (PLD) and connectivity

  • The effects of climate change on marine dispersal will depend on local oceanography, life history, behavior, and physiology (Fig. 5)

Read more

Summary

INTRODUCTION

Dispersal drives the exchange of genetic material among populations, with diverse ecological and evolutionary consequences including species range limits, connectivity, and the potential for local adaptation. Climate change exposes larvae to an environment that is novel on evolutionary timescales, affecting the phenology of their release, as well as their feeding, growth, development, behavior, mortality, habitat selection, and transport Taken together, these impacts on larvae will likely influence dispersal from the site of spawning (for free-spawners) or larval release (for brooders) to the site of settlement. We comprehensively searched for the following terms in the Web of Science, Biosis, and Google Scholar: all combinations of each climate factor (temperature, ocean acidification [OA], salinity, stratification, circulation, El Nino Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], North Pacific Gyre Oscillation [NPGO], storm, upwelling, UVR, hypoxia) with organismal factors (phenology, larval release, spawning, feeding, growth, development, behavior, swimming, mortality, settlement, recruitment, transport), along with the word “larva.”. We detail how oceanic changes will directly alter the transport of larvae as well as impact aspects of larval organismal biology critical for their dispersal, such as phenology, feeding, growth, mortality, and behavior. Scenario Range expansion driven by larval physiology and extreme events Local adaptation impacted by reduced pelagic larval duration (PLD) and connectivity

Background
Findings
CONCLUSIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call