Abstract

The fitness of non-feeding adult insects depends on energy accumulated during the larval stage. Larvae of the caddisfly Asynarchus nigriculus primarily feed on plant detritus, but supplement their diet with animal material obtained through cannibalism. Habitat drying constrains development in many populations of this species, and we hypothesized that cannibalism should accelerate development to facilitate timely metamorphosis. We manipulated larval diets in a field experiment by supplementing detritus with animal material, and in a laboratory experiment by varying animal material and detritus quality (conditioned vs unconditioned). We measured the effects of dietary manipulation on larval and pupal growth and development, the timing of metamorphosis, and adult fitness correlates. The results of the laboratory experiment suggest that this species can metamorphose with a detritus-only diet, but development is extremely protracted. In the field experiment, individuals with animal material in their diet had higher larval survival, shorter larval and pupal development times, and earlier emergence dates (7-10 days), than those without a supplement. This delay in emergence should have important effects on survival in natural populations where the difference between desiccation and successful emergence can be only a few days. Dietary supplementation also affected adult body mass (30-40% increase), female fecundity (30% more eggs), and proportional allocation to different adult body parts. Our results are consistent with recent growth-development models that predict coupled (earlier emergence and larger adults) rather than tradeoff responses (earlier emergence and smaller adults) to pre-threshold manipulation of larval diets. Many detritivorous aquatic insects supplement their diets with animal material, and our data provide evidence that this supplementation can have strong effects on fitness. This type of dietary supplementation should be especially important for taxa that do not feed as adults, and in temporary habitats that impose time constraints on larval development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.