Abstract

BackgroundAnopheles mosquito life-history parameters and population dynamics strongly influence malaria transmission, and environmental factors, particularly temperature, strongly affect these parameters. There are currently some studies on how temperature affects Anopheles gambiae s.s. survival but very few exist examining other life-history traits. We investigate here the effect of temperature on population dynamics parameters.MethodsAnopheles gambiae s.s. immatures were reared individually at 23 ± 1 °C, 27 ± 1 °C, 31 ± 1 °C, and 35 ± 1 °C, and adults were held at their larval temperature or at one of the other temperatures. Larvae were checked every 24 h for development to the next stage and measured for size; wing length was measured as a proxy for adult size. Females were blood fed three times, and the number of females feeding and laying eggs was counted. The numbers of eggs and percentage of eggs hatched were recorded.ResultsIncreasing temperatures during the larval stages resulted in significantly smaller larvae (p = 0.005) and smaller adults (p < 0.001). Adult temperature had no effect on the time to egg laying, and the larval temperature of adults only affected the incubation period of the first egg batch. Temperature influenced the time to hatching of eggs, as well as the time to development at every stage. The number of eggs laid was highest when adults were kept at 27 °C, and lowest at 31 °C, and higher adult temperatures decreased the proportion of eggs hatching after the second and third blood meal. Higher adult temperatures significantly decreased the probability of blood feeding, but the larval temperature of adults had no influence on the probability of taking a blood meal. Differences were observed between the first, second, and third blood meal in the times to egg laying and hatching, number of eggs laid, and probabilities of feeding and laying eggs.ConclusionsOur study shows that environmental temperature during the larval stages as well as during the adult stages affects Anopheles life-history parameters. Data on how temperature and other climatic factors affect vector life-history parameters are necessary to parameterise more reliably models predicting how global warming may influence malaria transmission.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-1053-5) contains supplementary material, which is available to authorized users.

Highlights

  • Anopheles mosquito life-history parameters and population dynamics strongly influence malaria transmission, and environmental factors, temperature, strongly affect these parameters

  • Climate change is expected to have a potentially important influence on the spread and transmission of vectorborne diseases, including mosquito-borne diseases such as malaria While shifts in environmental factors associated with climate change are expected to influence the global and/or local spread of malaria [1, 2], our knowledge of the precise effect of climatic factors, including temperature, on disease transmission remains limited [3, 4]

  • Statistical methods Larval developmental rates and larval size A non-parametric (Kaplan-Meier) survival analysis was performed on the time for each mosquito stage to develop to the larval, pupal, or adult stage, to allow for a comparison of how different temperature regimens during the immature stages affected the time to development from L1 to L2, L2 to L3, L3 to L4, L4 to pupae (P), and pupae to adults (A)

Read more

Summary

Introduction

Anopheles mosquito life-history parameters and population dynamics strongly influence malaria transmission, and environmental factors, temperature, strongly affect these parameters. Environmental temperature will play a complex role in the transmission of vector-borne diseases by influencing many life-history traits of both the mosquitoes and parasites that underlie transmission. It is clear, for example, that increasing mean temperatures associated with climate change may shorten the life span of the malaria vector [5, 6], and increase the developmental rate of the parasite within the mosquito [7,8,9], affecting transmission in opposing ways [10, 11]. A better understanding of the effects of environmental factors on mosquito ecology, and the quantification of these effects, are extremely valuable for predictions of vector abundance, distribution, evolutionary fitness, and transmission capacity [11, 21], and thereby the spread of malaria, under the influence of climate change

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call