Abstract

Chromophoric dissolved organic matter (CDOM) can play an important role in regulating biological production in coastal environments. Fluorescent dissolved organic matter (FDOM) is a subset of the larger CDOM pool that can be used to look at sources of CDOM. Experiments were conducted with copepods and the pelagic larvacean, Oikopleura dioica to determine if these two types of zooplankton excrete FDOM. Shipboard bottle experiments were conducted with copepods in the Gulf of Mexico, in the Mississippi River Plume in April 2001 and laboratory experiments with the pelagic larvacean, O. dioica were conducted in Oviedo, Spain in June 2001. Both copepods and O. dioica were found to excrete FDOM. Excitation/emission matrices revealed that both animals contributed to fluorescent protein pools (ex/em 275/315–350 nm) and to humic-like material (maximum ex/em 300/420 nm). The humic-like material excreted by the copepods and larvaceans was shifted toward shorter wavelengths, providing a possible unique fluorescent signature for zooplankton. Using a ratio of the humic-like fluorescence excreted by the animals (ex/em 300/420) to the humic-like fluorescence maximum in controls (ex/em 320/420 nm) showed the zooplankton could contribute nearly 50% of the Peak M fluorescence. Molecular weight analysis of the CDOM in an O. dioica excretion study showed that O. dioica excreted CDOM was primarily < 30 kDa. Both copepods and larvaceans are sources of marine FDOM and CDOM and can potentially influence the amount and type of CDOM present in coastal waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call