Abstract

One of the most challenging issues in oncology research and treatment is identifying oncogenic drivers within an individual patient's tumor which can be directly targeted by a clinically available therapeutic drug. In this context, gene fusions as one important example of genetic aberrations leading to carcinogenesis follow the widely accepted concept that cell growth and proliferation are driven by the accomplished fusion (usually involving former proto-oncogenes) and may therefore be successfully inhibited by substances directed against the fusion. This concept has already been established with oncogenic gene fusions like BCR-ABL in chronic myelogenous leukemia (CML) or anaplastic lymphoma kinase (ALK) in lung cancer, including special tyrosine kinase inhibitors (TKIs) which are able to block the activation of the depending downstream proliferation pathways and, consequently, tumor growth. During the last decade, the NTRK1, 2, and 3 genes, encoding the TRKA, B, and C proteins, have attracted increasing attention as another significant and targetable gene fusion in a variety of cancers. Several TRK inhibitors have been developed, and one of them, Larotrectinib (formerly known as LOXO-101), represents an orally available, selective inhibitor of the TRK receptor family that has already shown substantial clinical benefit in both pediatric and adult patients harboring an NTRK gene fusion over the last few years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.